Skip navigation

Featured Science Paper

Energetic electron precipitation from the outer radiation belt during geomagnetic storms

Scientists from BAS and the Space Weather Prediction Center in Boulder, Colorado, have shown that high energy charged particles that are usually trapped in the Earth’s magnetic field are released into the atmosphere at different locations during geomagnetic storms. The results will help to refine models of atmospheric chemistry and climate.

This paper describes how nine years of data from low-altitude satellites was used to analyse the different phases of geomagnetic storms, which are large-scale disruptions in the Earth’s magnetic field that may last for days. The analysis shows that during a geomagnetic storm, lower energy electrons are released into the Earth’s atmosphere almost immediately and at any longitude, but higher energy electrons are only released a few days later. The release of the higher energy electrons is also limited to a region that extends from the South Atlantic over the Antarctic Peninsula towards the South Pole.

As higher energy electrons penetrate deeper into the atmosphere and deplete ozone, this means that the effects of the higher energy electrons on atmospheric chemistry will be largest just poleward of the South Atlantic anomaly, and will occur a few days after the peak of magnetic storms.

Chemistry climate models must take the timing and location of precipitation at different energies into account when modelling the atmospheric response to geomagnetic storms and solar variability.

Find link to the full paper in the NERC Open Research Archive


Richard B. Horne (BAS), Mai Mai Lam (BAS), Janet C. Green (Space Weather Prediction Center, National Oceanic and Atmospheric Administration, Boulder, Colorado, USA)


Geophysical Research Letters, Vol. 36, L19104, doi:10.1029/2009GL040236, 2009