Are You Aware of the International Polar Year 2007-2008?

Compiled by:

Belina Terfassa
PhD student
Department of Chemistry
Addis Ababa University
Ethiopia

Participant of IPY Education and Outreach meeting (Cambridge) from WAYS-Africa
e-mail: belinaterfasa@yahoo.com

July 2007
Preface

It was an honour for me to get a chance to attend the International Polar Year 2007-2008 Education, Outreach and Communication (IPY-EOC) meeting held in Cambridge from June 11-20, 2007. I obtained this opportunity through an announcement forwarded by the World Academy of Young Scientists-Regional Office for Africa (WAYS-ROA) to its members. I was also one of the founding members WAYS-ROA in March 2007 in South Africa, Pretoria.

Since I was the only African, non-polar Continent, found on the meeting I was considered as a representative of WAYS-ROA and Africa at large. As a result I decided to write a short story all about IPY to address one of the missions of IPY 2007-2008 which states "Increasing awareness of IPY and making the Poles known to people outside the poles whom to day knows very little or nothing about the Poles and to raise the level of interest and knowledge for already interested people". The International Polar Year will be used as a special opportunity to raise the awareness among people far away from the poles with nearly no relationship to the regions. So, I assumed in my mind that my audiences might not have any information about IPY; therefore, I took advantage my experience of teaching and learning material preparation to organize initial material and thus preferred to begin from the basic concepts of IPY to create awareness among WAYS-ROA members and to fellow Africans at large.

Many Countries in the world have been well coordinated and planned to do research on Polar Regions for the next two years and named it as International Polar year 2007- 2008. Though Africa is a non-polar region, it would share all benefits and catastrophes from the activities that are carried out elsewhere on our Planet and contribute to the changes that are taking place on it as well. It is evident that climate change has affected the life of Africans severely: irregular rainfall, desertification, expansion of tropical diseases, etc. Hence, climate change and contributing to the solutions are concerns Africans than any other continent. As a result WAYS-ROA and all Africans should be aware of the activities that are going on our Planet, particularly IPY 2007-2008, to benefit their people from research findings that are expected to come out from it.

Belina Terfassa
July 2007
Contents

1. Introduction ... 4
 1.1 Concept of International Polar Year (IPY) 2007 – 2008 4
 1.2 Themes of (IPY) 2007 – 2008 .. 5

2. The Earth’s Poles .. 6
 2.1 The Arctic .. 6
 2.2 The Antarctica ... 8
 2.3 Comparison of Arctic and Antarctica ... 11

3. History of IPY ... 11
 3.1 The First International Polar Year ... 11
 3.2 The Second International Polar Year .. 12
 3.3 The International Geophysical Year .. 13
 3.4 The International Polar Year 2007 –2008 ... 13

 4.1 Why Polar? .. 15
 4.2 Why “International”? .. 15
 4.3 Why a “Year”? ... 15

5. Objectives of IPY 2007 –2008 .. 16

7.1 IPY-EOC Education Group Meetings June 11th-13th, 200720
7.2 IPY-EOC Education Group Meetings June 17th-19th, 200721
7.3 IPY-EOC Education Group Meetings June 18th and 19th, 2007 ..22
8. Relevant Websites to IPY ...23
9. Acknowledgements ...23
Are You Aware of International Polar Year 2007-2008?

1. Introduction

1.1 Concept of the International Polar Year (IPY) 2007-2008

The concept of the International Polar Year 2007-2008 is of an internationally coordinated program, interdisciplinary scientific research and observations in the Earth’s polar regions to explore new scientific frontiers, to deepen our understanding of polar processes and their global linkages, to increase our ability to detect changes, to more fully involve arctic residents with research activities, to attract and develop the next generation of polar scientists, engineers and logistics experts, and to capture the interest of schoolchildren, the public and decision-makers.

It is a two-year program of science, research and education focused on the Arctic and Antarctic regions. International researchers from universities, northern communities, and governments are working to advance our understanding of cultural, social, economic and health dimensions, as well as geophysical, climate and biological processes in polar regions. It involves increasing the awareness of IPY and making the poles known to people outside the poles whom to day knows very little or nothing about the poles, and to raise the level of interest and knowledge for already interested people.

The IPY will include a broad range of activities organized around selected number of scientific and outreach themes. Overall, the IPY seeks to foster new observations and research, exploiting innovative, modern technology, whilst building on and enhancing polar initiatives already planned or underway. The geographic focus will extend over latitudes from approximately 60° to the pole, both north and south.

1.2 Themes for IPY 2007-08 Research

The research will address six themes as follows:
1. **Status**: to determine the present environmental status of the Polar Regions;
2. **Change:** to quantify, and understand, past and present natural environmental and social change in the Polar Regions; and to improve projections of future change;

3. **Global Linkages:** to advance understanding on all scales of the links and interactions between polar regions and the rest of the globe, and of the processes controlling these;

4. **New Frontiers:** to investigate the frontiers of science in the Polar Regions;

5. **Vantage Point:** to use the unique vantage point of the polar regions to develop and enhance observatories from the interior of the Earth to the Sun and the cosmos beyond;

6. **Human Dimension:** to investigate the cultural, historical, and social processes that shape the sustainability of circumpolar human societies, and to identify their unique contributions to global cultural diversity and citizenship.

In pursuing these themes, IPY 2007-2008 will seek to exploit new technological and logistical capabilities, and to make major advances in knowledge and understanding. It aims to leave a legacy of new or enhanced observational systems, facilities and infrastructure, numerical Earth simulators, and research networks, as well as an unprecedented degree of access to the data and information it will generate.

Key objectives are to attract and develop the next generation of polar researchers and engineers, and to engage the interest and involvement of polar residents, and of schoolchildren, the general public, and decision-makers, worldwide.

The official period of the IPY 2007-2008 will be from March 1, 2007 until March 1, 2009 to allow observations during all seasons, and the possibility of two summer field seasons in each polar region. The main geographic focus will be the Earth’s high latitudes, but studies in any region relevant to the understanding of polar processes or phenomena will be undertaken.

IPY is a truly global endeavor and over 30 nations are involved in this event. Many countries are involved with dozens of scientific projects endorsed by the IPY. The main goals of these countries are to advance current understanding and investigate the unknowns in polar science and education of next generation of scientists and engaging the awareness, interest and understanding of polar research among polar residents, the general public, school children and decision-makers worldwide.

2. **The Earth's Poles**
2.1 The Arctic

The Arctic is the region around the Earth’s North Pole, opposite the Antartica region around the South Pole. The word Arctic comes from the Greek word *arktos*, which means bear. This is due to the location of the constellation Ursa Major, the "Great Bear". The boundary is generally considered to be north of the Arctic Circle (66° 33' N). The Arctic covers 14.8 million km² of land and 13 million km² of ocean (roughly three times the size of Europe).

The Arctic region has indigenous human inhabitant: Inuit (Eskimos), Lapps, Nenets, Chukchis. Socially and politically, the Arctic region includes the northern territories of the eight Arctic states: parts of Canada, Denmark, Finland, Iceland, Norway, Sweden, the Russian Federation and USA. It also includes the Arctic Ocean, which overlies the North Pole. The member states of the Arctic regions have established a council called the Arctic Council, which is high-level for cooperation, coordination and interaction between arctic States, indigenous communities and other arctic residents.

![The North Pole](image)

The Arctic's climate is characterized by cold winters and cool summers. Average winter temperatures can be as low as -37°C (-35°F) and the coldest recorded temperature is approximately -68°C (-90°F).

Herbivores on the tundra include the Arctic Hare, Lemming, muskox and caribou. They are preyed on by the Arctic Fox, wolves, ans wolverine.
The Polar bear is also a predator, though it prefers to hunt for marine life from the ice. There are also many birds and marine species endemic to the colder regions.

The arctic has significance on the global is biodiversity in that two hundred and seventy-nine species of migratory birds breed in significant numbers in the Arctic; of these, 30 reach southern Africa, 26 reach Australia and New Zealand, 22 reach southern South America, and several pelagic species reach the southern oceans.

The Arctic is comparatively clean, although there are certain ecologically difficult localized pollution problems that present a serious threat to people’s health living around these pollution sources. Due to the prevailing worldwide sea and air currents, the Arctic area is the fallout region for long-range transport pollutants, and in some places the concentrations exceed the levels of densely populated urban areas. Due to global climate changes, by 2100, the Arctic is expected to warm 3–5°C over land and 7°C over the oceans.

2.2 Antarctica

The name Antarctica comes from the Greek *antarktikos*, meaning "opposite to the “Arctic”. Antarctica is Earth’s southernmost continent, overlying the South Pole. Situated in the Southern hemisphere and largely south of the Antarctic Circle, Antarctica is surrounded by the Southern Ocean. At 14.4 million km², it is the fifth-largest continent in area after
Asia, Africa, North America, and South America; in turn, Europe and Australia are smaller.

The first humans to reach the Geographic South Pole were Norwegian Roald Amundsen and his party on December 14, 1911. Amundsen's competitor Robert Falcon Scott reached the South Pole a month later. On the return trip Scott and his four companions all died of starvation and extreme cold. In the honour of this tragedy a Polar Research Institute found in Cambridge, which I myself had a chance to visit during my stay in Cambridge for IPY-EOC meeting, inherited its name from this polar explorer and it is called Scott Polar Research Institute.

Some 98% of Antarctica is covered by ice, which averages at least 1.6 km in thickness. However, the continent remained largely neglected for the rest of the 19th century because of its hostile environment, lack of resources, and isolated location.

On average, Antarctica is the coldest, driest and windiest continent, and has the highest average elevation of all the continents. Since there is little precipitation, except at the coasts, the interior of the continent is technically the largest desert in the world. The continent has approximately 90% of the world's ice (and thereby approximately 70% of the world's fresh water). If all of this ice were melted, sea levels would rise about 61 m (200 feet).

There are no permanent human residents and Antarctica has never had an indigenous population. The Antarctic Treaty regulates international relations with respect to Antarctica. Twelve countries signed
the treaty in 1959 and 46 countries have now signed it. The Treaty set aside Antarctica as a scientific preserve, established freedom of scientific investigation and banned military activity on that Continent. Ongoing experiments are conducted by more than 4,000 scientists of many nationalities and with different research interests.

The climate of Antarctica is the coldest on earth, with the lowest temperature ever recorded on earth being -89.6 °C (-129 °F) at Vostok Station and the highest temperature ever recorded in Antarctica was 14.6°C (58.3°F), which took place at Hope Bay and Vanda Stations. It has the mean annual temperature of the interior is -57°C (-70°F). The South Pole has a desert climate and extremely dry, almost never receiving any precipitation. Air humidity is near zero, however, on most parts of the continent the snow never melts and is eventually compressed to become the glacial ice that makes up the ice sheet.

Only cold-adapted plants and animals survive there, including penguins, fur seals, mosses, lichens and many types of algae.

![Penguins](image)

As in the Arctic regions, there have been effects on Antarctica attributed to global warming. In 2005, a mass of ice comparable in size to the U.S. state of California briefly melted and refroze. This may have resulted from temperatures rising to as high as 5 °C (41°F).
2.3 Comparison of the Arctic and the Antarctica

<table>
<thead>
<tr>
<th>Where It Is found</th>
<th>Arctic</th>
<th>Antarctic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geography</td>
<td>Far north</td>
<td>Far south</td>
</tr>
<tr>
<td>Includes the Arctic Ocean which is covered by ice-many islands and parts of the mainland of North America, Asia and Europe</td>
<td>Land covered by sheets of ice</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Climate</th>
<th>Cold and humid</th>
<th>Cold and dry</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average Temperature</td>
<td>− 30 °C (−22 °F)</td>
<td>− 34 °C (−30 °F)</td>
</tr>
</tbody>
</table>

| Population | Inuit (Eskimos), Lapps, Nenets, Chukchis | No indigenous people except scientists doing research |

| Common Animals | Polar bears, seals, Arctic foxes, whales | Penguins, seals, whales, fish |

3. History of IPY

On three occasions over the past 125 years scientists from around the world banded together to organize concentrated scientific and exploring programs in the Polar Regions. In each major thrust, or “year,” scientific knowledge and geographical exploration were advanced, thereby extending understanding of many geophysical phenomena that influence nature’s global systems. Each polar year was a hallmark of international cooperation in science. The experience gained by scientists and governments in international cooperation set the stage for other international scientific collaboration. International scientific cooperation also paved the way for several political accords that gained their momentum from the polar years. IPY 2007-2008 will expand upon this legacy of scientific achievement and societal benefits.

3.1 The First International Polar Year

The First IPY took place from 1882 to 1883 and was the first series of coordinated international expeditions to the Polar Regions ever undertaken. It was sponsored by the International Meteorological Organization (IMO), a predecessor of the World Meteorological Organization (WMO). The idea of IPY was the inspiration of the Austrian explorer and naval officer Lt. Karl Weyprecht who was a scientist and co-commander of the Austro-Hungarian Polar Expedition of 1872-74.
From his experiences in the Polar Regions Weyprecht became aware that solutions to the fundamental problems of meteorology and geophysics were most likely to be found near the Earth’s poles, and the decisive results would only be obtained through a series of coordinated scientific expeditions. The key scientific goals of the first IPY were that geophysical phenomena could not be surveyed by one nation alone; rather, an undertaking of this magnitude would require a coordinated international effort. Twelve nations participated, and 15 expeditions to the poles were completed (13 to the Arctic, and 2 to the Antarctic). Beyond the advances to science and geographical exploration, a principal legacy of the First IPY was setting a precedent for international science cooperation. Unfortunately Weyprecht died in 1881 but his aspiration lead to the largest coordinated series of scientific expeditions ever undertaken in the arctic during the 19th century.

3.2 The Second International Polar Year

The Second IPY took place from 1932 to 1933 and it was also sponsored by IMO. It heralded advances in meteorology, magnetism, atmospheric science, and in the "mapping" of ionosphere phenomena that advanced radio science and technology. Forty nations participated and forty permanent observation stations were established in the Arctic, creating a step-function expansion in ongoing scientific Arctic research.

3.2 The International Geophysical Year

The International Geophysical Year (IGY), 1 July 1957 to 31 December 1958, celebrated the 75th and 25th anniversaries of the First and Second IPYs. IGY was co-sponsored by WMO and International Council for Science (ICSU).

The IGY was conceived by a number of post-World War II eminent physicists, including Sydney Chapman, James Van Allen, and Lloyd Berkner, at an informal gathering in Washington, DC in 1950. These
individuals realized the potential of the technology developed during WW II (for example, rockets and radar), and they hoped to redirect the technology and scientific momentum towards advances in research, particularly in the upper atmosphere. The IGY’s research, discoveries, and vast array of synoptic observations revised many notions about the Earth’s geophysics. One long disputed theory, continental drift, was confirmed and the Van Allen Radiation Belt encircling the Earth was discovered.

For many disciplines, the IGY led to an increased level of research that continues to the present. A notable political result founded on the IGY was ratification of the Antarctic Treaty in 1961. The success of the IGY also fostered an additional year of research through the International Geophysical Cooperation. The scientific, institutional, and political legacies of the IGY endured for decades, many to the present day.

2.4 International Polar Year 2007-2008

IPY 2007-2008 marks the 50th anniversary of International Geophysical year and it was co-sponsored by ICSU and WMO. The IPY 2007-2008 has tapped a powerful vein of enthusiasm and energy within the scientific community. This in part derives from the wide recognition of the seminal nature of the IGY. The IGY fundamentally changed how earth and space science is conducted and reverberated far beyond the initial years of exploration and research.

The Planning for this latest IPY began in February 2003, when ICSU responded to overwhelming interest from scientists and polar and global research bodies by establishing an international planning group. This group produced the initial framework document (ICSU 2004), which was developed in broad consultation with the scientific community and approved by the ICSU General Assembly in October 2005. The ICSU planning group was succeeded by ICSU-WMO Joint Committee that has been charged with overseeing the implementation of IPY and coordination of activities. In order to support these functions an International Programme Office (IPO) in Cambridge, UK was established.

4. Rationale Behind IPY 2007-2008

One may ask questions like “Why is it becoming a big issue for international communities to mobilize huge effort allotting longer time of two years to work research on Polar Regions”? “Why is the Polar Regions and Polar research important to all people on the Earth”? “What is the
relationship between processes occurring in the Polar and Non-polar Regions”? And so on.

The Polar Regions are integral components of the Earth’s system. They couple to global climate, sea level, biogeochemical cycles, ecosystems, and human activities. Through these connections, the Earth’s high latitudes respond to, amplify, and drive changes elsewhere. At a time when humans are exerting an increasing impact on the planet and when the human condition is increasingly affected by global changes, the Polar Regions are especially important and relevant. However, the scope and scale of the polar research challenges lie beyond the capabilities of individual nations or traditional scientific disciplines. Numerous bodies exist to stimulate and coordinate multinational and multidisciplinary polar research activities, but the current rate of advances does not fulfill the urgent needs of policy makers to be provided with key information to underpin sustainable economic development. By stimulating and guiding an intense burst of effort, IPY 2007- 2008 aims to accelerate progress towards providing the required policy-relevant answers

4.1 Why Polar?
- Polar regions are active, highly connected components of the planet
- Significant changes are occurring in the Polar Regions and the changes are rapid
- Global changes are amplified at the poles
- Polar regions hold unique information on the past behaviour of the Earth system
- Polar regions having growing economic and geopolitical importance, especially the Arctic
- The harsh conditions and remoteness of the polar regions have hampered scientific inquiry compared to mid- and low-latitudes
- There is a need to re-establish and enhance operational observing systems in the polar regions
- The polar regions offer a unique vantage point for a variety of terrestrial and cosmic phenomena

4.2 Why International?
- Polar processes extend across national boundaries
- The science challenge exceeds the capabilities of any one nation
- A coordinated approach maximizes outcomes and cost effectiveness
- International collaboration shares benefits and builds relationships
• The new knowledge and understanding generated by IPY2007-2008 will be of worldwide relevance

4.3 Why a "Year"?
• Focused, an intensive and coordinated burst of effort will accelerate advances in knowledge and understanding of our planet
• A defined-period polar “snapshot” will provide a crucial benchmark for detecting and understanding change in comparison with past and future data sets
• An (extended) year provides an opportunity for observations in both Polar Regions throughout the seasonal cycle
• Recent technology and holistic advances provide opportunity to implement new modes of planetary study
• The legacy of enhanced observing systems generated by IPY will provide an improved foundation for ongoing monitoring and lay the foundation for future generation

4.4 Why 2007-2008?
• The anniversaries of past IPY and the IGY set a firm deadline
• There is a pressing need to capture contemporary information on change
• A 3-4 year planning horizon is challenging but feasible
• The timescale for preparations allows advances in technology and logistics to be exploited to address new issues and access new areas

5. Objectives of the IPY 2007-2008
The ICSU Executive Board established the IPY 2007-2008 Planning Group in June 2003. It has consulted widely with the international research community and on the basis of those consultations and of its own considerations it has defined the objectives for an IPY 2007-2008 as follows:
• The IPY 2007-2008 should be an intensive and internationally coordinated campaign of high quality research activities and observations in the Polar Regions that would not otherwise be undertaken.
• It will have an interdisciplinary emphasis, with active inclusion of the social sciences.
• The IPY 2007-2008 is intended to lay the foundation for major scientific advances in knowledge and understanding of the nature
and behaviour of the Polar Regions and their role in the functioning of the planet.

- In addition, the IPY 2007-2008 should leave a legacy of observing sites, facilities and systems to support ongoing polar research and monitoring.
- The Polar Year will strengthen international coordination of research and enhance international collaboration and cooperation in Polar Regions.
- Given the present understanding of the poles as key components of a global system, the IPY 2007-2008 programmes must address both Polar Regions and their global interactions.
- Since interdisciplinary work is fundamental to building this global understanding, the IPY will link researchers across different fields to address questions and issues lying beyond the scope of individual disciplines.
- The IPY 2007-2008 programmes will collect a broad-ranging set of samples, data and information regarding the state and behaviour of the Polar Regions to provide a reference for comparison with the future and the past, and data collected under IPY 2007-2008 will be made available in an open and timely manner. It will also provide a unique opportunity to intensify the recovery of relevant historical data and ensure that these also are made openly available.
- The IPY 2007-2008 projects will attract, engage and develop a new generation of polar researchers, engineers and logistics experts and must engage the awareness, interest and understanding of schoolchildren, the general public and decision-makers worldwide in the purpose and value of polar research and monitoring.

By focusing collective attention on IPY 2007-2008, the world’s attention has begun to focus on the Polar Regions. This opportunity has abundant potential to impress upon people in all walks of life the multitude of ways that the Polar Regions are important to every person on Earth. Youth that are inspired to scientific or technical careers or that come to appreciate the importance of the polar regions and of their stewardship as part of an intimately linked climate and cultural system will give IPY 2007-2008 enduring impact.

7. Educations, Outreach and Communication of IPY2007-2008

Education, Outreach and Communication (EOC) are integral components of the International Polar Year 2007-2008. The mission for the outreach part of IPY is to attract and develop the next generation of polar scientists, engineers and leaders and to capture the interest of the public and decision-makers.

The education and outreach will primarily focus on communicating the significance of changes in the Polar Regions to the regions themselves and to the rest of the world and provide a high-profile platform for synthesis and communication of major IPY findings. As a result the target audiences of the education, outreach and communication issues are the scientific (research) community, young and potential new polar researchers, the pre-university education community, Arctic communities, the general public and decision-makers.

It is planned to encourage everyone to get involved in this huge, exciting scientific collaboration by visiting exhibitions, teaching and learning about the polar regions, watching films and documentaries, reading books, going on expeditions, and contacting scientists while in the field.
To this end, a group of educators from around the world met together in Cambridge from June 11-20, 2007 to discuss strategies and activities that could build on existing structures, and help to raise awareness of the polar regions using existing resources. There were two major groups on the meetings: the Education group and the media group. The education group was further arranged in two meetings; one focusing on general education and the second meeting on tertiary education of the IPY. The idea was to identify and develop activities that would serve the broadest range of partners, including teachers, journalists, young researchers, IPY scientists, national committees, and science communicators.

Activities were identified that not only supported these three key groups, but could also then be expanded to support the broader IPY community interested in EOC. The group also took specific care to remember the needs of IPY scientists and national partners.

Five key messages or concepts have been identified for IPY Communication

IPY Messages:
- Shrinking Ice and Snow
- Neighbours in the North
- Global Linkages
- New Frontiers of Science
- Making Science Accessible

How do we communicate these?
What is the legacy?
How do we evaluate its success?

7.1 IPY-EOC Education Meetings, June 11th-13th, 2007
This group of teachers and educators from around the world used the meeting to “develop ways to raise awareness of the Polar Regions, and the relevance of the Polar Regions” to all areas of the world. The focus was on activities that would support national and regional activities, and
would be flexible and sensitive to local resources and conditions. The participants of this meeting were:

1. Louise Huffman (US)
2. Rene Malherbe (Netherlands)
3. Takako Takano (Japan)
4. Karl Hetland (Norway)
5. Heather Lane (UK)
6. Mark McCaffrey (US)
7. Melianie Raymond (New Zealand)
8. Elena Sparrow (US Alaska)
9. Sandy Zicus (Australia)
10. Khadijah Abdul Rahman (Malaysia)
11. Belina Terfassa (Ethiopia, WAYS-Africa)
12. Le Zhang (China)
13. David Hik (Canada)
14. Fan Zhao (China)
15. Dave Carlson (IPY International Program Office)
16. Rhian Salmon (IPY International Program Office)

The Education Group has suggested seven core activities:

1. IPY Ambassadors and digital resources
2. IPY Days
3. Solicit Partnerships
4. EOC Conference
5. Monthly Bulletin
6. Develop community involvement/awareness in IPY, globally
7. IPY Evaluation

These suggestions were passed on to the media and tertiary education groups who developed ideas further.

7.2 IPY-EOC Tertiary Education Group Meetings, June 17-19, 2007

1. Jen Baeseman (US)
2. Melianie Raymond (New Zealand)
3. Tyler Kuhn (Canada)
4. Halldór Jóhannesson (Iceland, Arctic Portal)
5. Elena Sparrow (US Alaska, University of Arctic)
6. Hugues Lantuit (Germany)
7. Belina Terfassa (Ethiopia, WAYS-Africa)
8. Rhian Salmon (IPY International Program Office)
9. Nicola Munro (IPY International Program Office)
10. Lars Kullerud (Norway, University of Arctic)

The mandate of the Tertiary Education Group is “To foster the leadership of the next IPY.” The Tertiary Education group is primarily concerned with activities that reach out to those young researchers and early career scientists who will become the senior scientists of IPY 5. Central to this goal is the knowledge that the vision of the Tertiary Education group cannot be limited to 2 years. Success will ultimately be measured in 25 years when the young scientists who benefited from the present IPY take leading roles in the next IPY. There were three key aspects to the target audience of the Tertiary Education group. This Group agreed that Tertiary Education activities should remain focused on aspiring and emerging polar scientists, while focusing on maintaining interdisciplinary at an international level.
7.3IPY-EOC Media Group Meetings, June 18th and 19th, 2007

The participants of this group were:
1. Tove Kolset (Norway)
2. Sandy Zicus (Australia)
3. Margarete Pauls (Germany)
4. Jean de Pomereu (UK/Belgium)
5. Linda Capper (UK)
6. Le Zhang (China)
7. Fan Zhao (China)
8. Khadijah Abdul Rahman (Malaysia)
9. Dave Carlson (IPO)
10. Rhian Salmon (IPO)

The major goals identified by the media group were:
• International collaboration: encourage national committees – enhance national projects through international awareness.
• Utilize resources on an international level to enhance the national projects and facilitate the international communication. Make the resources (e.g. photo, video–digital library) available internationally.
• The international media work can trigger national interest.
• Important for the international media officers to see what can be done on the international level and link it to the national work.
• Communicate with the major networks (partnerships).
• Global community: Connecting the polar with non-polar countries
8. Relevant Websites To IPY

I have used the following website to compile the ongoing material. Therefore, I would like to express my deepest appreciations and thanks to all people who organized and contributed to these websites to make their knowledge and experiences available to humanity for free through these sites.

3. www.antartica.ac.uk
4. www.eur.oceans.eu
7. http://www.IPY.no
11. http://www.bioditrl.sunsite
17. http://www.ysf.ca
18. http://www.youtube.com

Acknowledgements

I wish to express my thanks to Janine Chantson from WAYS-ROA for she has made available the information about IPY-EOC meeting on time. I would also like to express my thanks to IPY-IPO for it has realized my participation on the meeting by covering all my expenses. I would also like to express my deepest appreciation to Dr Rhian Salmon for her unserved and continuous communication until my arrival in Cambridge and for the care she has taken for me during my stay at the meeting. Finally my sincerer thanks are forwarded to participants of the IPY-EOC meeting for their educative and friendly approaches.